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Abstract—Cloth detection and manipulation is a common task
in domestic and industrial settings, yet such tasks remain a
challenge for robots due to cloth deformability. Furthermore, in
many cloth-related tasks like laundry folding and bed making, it
is crucial to manipulate specific regions like edges and corners,
as opposed to folds. In this work, we focus on the problem
of segmenting and grasping these key regions. Our approach
trains a network to segment the edges and corners of a cloth
from a depth image, distinguishing such regions from wrinkles
or folds. We also provide a novel algorithm for estimating the
grasp location, direction, and directional uncertainty from the
segmentation. We demonstrate our method on a real robot system
and show that it outperforms baseline methods on grasping
success. Video and other supplementary materials are available
at: https://sites.google.com/view/cloth-segmentation.

I. INTRODUCTION

In cloth manipulation tasks such as laundry folding, it is
important that the robot can identify and grasp key regions of
the cloth. These regions typically include the “real edges” or
corners of a cloth. By “real edges,” we mean the edges of the
cloth in the unfolded configuration, as opposed to any folds or
creases that may appear as edges in a particular configuration.
If the robot grasps a cloth fold or crease and attempts to use
such a grasp to neatly fold the cloth, the result likely will not
end up as expected. Thus, failing to grasp the cloth along the
real edges could lead to failures for many downstream tasks.

As we will show, traditional computer vision algorithms
fail to distinguish the difference between real cloth edges and
apparent edges created by creases or folds. In addition, the
robot must also determine the appropriate grasping direction
along the cloth edge, which is non-trivial if the cloth is in
a crumpled configuration; we will show that simple heuristics
frequently fail at this task. We provide a method that identifies
edges and corners of a cloth, predicts grasp directions, and
estimates the uncertainty of these directions. These predictions
will then be used to quickly and reliably grasp the cloth along
its edges and corners, even from crumpled configurations.

In this paper, we present an approach for segmenting these
key regions of cloth, even in highly crumpled configurations
(see Fig. 1). To achieve this, we train a neural network to
predict cloth edges and corners from a depth image. We
also train the network to predict the inner edges, the region
interior to the cloth’s true edges, for grasp direction estima-
tion. The network is trained on a dataset of RGB-D images
extracted from 8 minutes of video of a human manipulating the
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Fig. 1: Grasping using cloth region segmentation: Robot with
depth sensor (a) captures depth image of test cloth (b). Depth
image is segmented into outer edges ( yellow ), inner edges
(green) and corners (blue) using our cloth region segmentation
network (c). Ambiguous regions are colored in orange. Our
method selects a grasp location and direction, shown as
a magenta arrow. The robot executes a sliding grasp and
successfully grips the cloth by its edge.

cloth. The ground-truth for the network is provided by color-
labeling the cloth (see Fig. 2), forgoing the need for expensive
human annotations. The grasp configuration and uncertainty
estimation are both important for grasping the cloth, as mis-
estimating the grasp direction and approaching at an angle not
orthogonal to the cloth edge mean that grasps are more likely
to fail. Using a dense estimate of grasp directional uncertainty,
we can choose the grasp point most likely to succeed.

II. RELATED WORK

A. Cloth Perception

Robotic cloth manipulation is a well-studied domain with
a variety of unsolved tasks, including laundry folding [10, 1],
laundry unfolding or smoothing [15, 6, 16, 17, 5, 19], bed
making [9, 14], and grasping [4, 11, 18].



Many of these approaches use traditional computer vision
algorithms to detect cloth regions for various downstream
tasks [17, 15, 10]. These perception algorithms usually re-
quire significant pre-manipulations to get a more structured
configuration of the cloth, thus they are more time consuming
than many learning-based methods.

Another category of methods apply learning-based algo-
rithms like YOLO and autoencoder networks for image feature
extraction [4, 19]. The most similar method to ours is [14]
which learns to identify a corner of a bed sheet by painting a
corner red. Our method expands upon this work by predicting
a dense segmentation of real edges, inner edges and corners,
as opposed to a single 2D corner position. Furthermore, our
method outputs dense grasp direction proposals as well as their
corresponding uncertainty estimates. We will show that grasp
direction proposals and uncertainty estimates are crucial for
our grasping performance, enabling us to handle challenging
crumpled cloth configurations.

B. Cloth Grasping

Although the focus of our work is on perception rather than
grasping, we review prior work on cloth grasping strategies.
A simple top-down or angled grasp is commonly used once
a grasp point has been selected [17, 14]. A top-down grasp
followed by 6DOF grasping on detected corners of the the
hanging cloth has also been studied [10].

Other prior works learn a policy for grasping. [11] learns the
region in posture parameter space that successful grasps are
concentrated. [4] uses Q-learning to train a policy for grasping
a folded towel from a stack. [18] uses Soft-Actor-Critic to train
a policy for rope and cloth manipulation.

In our work, we identify the area where successful grasps
are concentrated in the posture parameter space. Then we
execute a hand-designed sliding grasp policy to grasp real
edges and corners identified by our perception method.

III. APPROACH

A. Cloth Region Segmentation

We train a U-Net[13]-based network which receives as input
a depth image of the scene containing the cloth. The network
predicts semantic labels for each pixel, giving the probability
that the pixel contains a cloth outer edge, inner edge, corner, or
neither. We then threshold this probability to obtain a semantic
segmentation mask for the cloth edge and corner locations
(see Fig. 3a for an example of output). To obtain ground-truth
labels, we mark all edges and corners with colored paint to
get the position of all cloth edges and corners in the image
(see Fig. 2). This approach is similar to [14]; differences in
our work are explained in Sec. II. We collected 8 minutes of
video with a human manipulating this labeled cloth for a total
of 6700 RGB-D images split into 6:1:1 train, validation, and
test sets.

B. Grasp Configuration Selection

1) Grasp Direction Estimation: To determine the appropri-
ate grasp direction, we augment the above pipeline by also
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Cloth Region Segmentation

Fig. 2: Training the segmentation network. Input is depth and
RGB provides labels.

predicting the cloth “inner edges,” the 1.5cm region interior
to the 1.5cm cloth outer edge. The inner edge labels are shown
in green in Fig 2.
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Fig. 3: Illustration of grasp configuration selection. Colors as
in Fig. 1. (b) shows the cropped section in (a); (c) shows a
subsample of grasp direction proposals for each outer edge
points; (d) shows the grasp directional uncertainty for each
outer edge points.

Given the predicted segmentation for these cloth regions, we
now select a grasp point and direction that allows our sliding
grasp policy to most easily grasp the cloth. A sliding grasp
that starts with the gripper oriented towards a cloth edge as
in Fig. 4 will intercept the edge upon translation. However,
a grasp oriented parallel to the edge or approaching from the



reverse direction will not intercept the edge and fail to grasp.
Whereas a top-down grasp on overlapping parts of cloth will
grasp multiple layers of cloth, a sliding grasp can separate one
layer of cloth from another.

We first threshold the output of the network described in
Sec. III-A to obtain a set of points estimated to belong to the
outer edge EO and a set of points that belong to the inner
edge EI. Then, for each outer edge point p = [px, py] ∈
EO, we find the closest inner edge point q = [qx, qy] by
Euclidean distance. With the correspondence between p and
q, we further define the grasp direction at point p to be the
direction along the vector from p to q. Fig. 3c shows a subset
of those grasp directions.

2) Directional Uncertainty Estimation: Fig. 3c shows cases
where, due to the complex folds of the cloth, the vector from p
to q does not indicate an appropriate grasp direction. Thus, for
robust grasping, we also compute a measure of the uncertainty
in this grasp direction.

We define the uncertainty of the grasp direction for a single
point p to be the variance of the grasp directions predicted by
its neighbours. To compute this variance, let Nk(p) be the set
of k closest pixels points in EO of p in Euclidean distance; let
α be the angle between #  »pq and a unit vector along horizontal
x axis. Formally we can define the cosine and sine of the grasp
direction at p as

fcos(p) = cos(α) = (qx − px)/�q− p�2 (1)
fsin(p) = sin(α) = (qy − py)/�q− p�2 (2)

We can then define observation vectors x0(p) and x1(p) to
contain the cosine and sine of the grasp direction of all points
in Nk(p)

x0(p) =
�
fcos(n) | n ∈ Nk(p)

�
(3)

x1(p) =
�
fsin(n) | n ∈ Nk(p)

�
(4)

Next we define the sample covariance matrix K(p) in the
usual manner from the observations x0(p) and x1(p)

Kij(p) =
1

N − 1

N�

k=1

(xik(p)− x̄i(p)) (xjk(p)− x̄j(p)) (5)

where xij(p) is the jth element of xi(p), and x̄i(p) is the
mean of xi(p).

Finally, we define the uncertainty of our grasp direction
prediction to be the sum of the variances of the individual
dimensions, or the trace of K: Tr(K(p)) = V ar(x0(p)) +
V ar(x1(p)), where V ar(xi(p)) is the variance of xi(p).

3) Grasp Point Selection: For each outer edge point
p ∈ EO, we compute an uncertainty estimate U(p) =
Tr(K(p)) as described above. For grasp point selection, we
pick the outer edge point p that has the lowest uncertainty:
argminp∈EO

U(p). We use standard projection and motion
planning techniques to execute the sliding grasp given the
computed grasp configuration.

45˚

(a) Pre-slide pose. (b) Post-slide pose. (c) Pinch grasp.

Fig. 4: Sequence of poses for the sliding grasp policy. The
sliding action is a translation from the pre-slide to post-slide
pose. The slide intercepts the target grasp point on the cloth.

IV. EXPERIMENT SETUP

All experiments were performed on a 7 DOF Rethink
Robotics Sawyer Robot with a Weiss WSG-32 parallel-jaw
gripper (see Fig 1a), and a Microsoft Azure Kinect RGB-D
sensor. Our test cloth is a white, unlabeled cloth with the same
dimensions as the labeled one used for training; however, our
depth-based method is color-invariant and generalizes well to
different sizes and textures. The video on the website contains
examples of such generalization.

V. EXPERIMENTS

We evaluated our method on grasping cloth edges and
corners. Each grasping trial starts with a randomly crumpled
cloth in the center of the robot’s workspace, obtained by
dropping the cloth at least 0.1m from the surface. We then
run our method on the robot.

A grasp is considered a success if it pinches a cloth edge or
corner and lifts it 30cm above the workspace. Since a grasp
could fold over the cloth, we consider a grasp with a single
fold over to be a success if the fold is less than or equal to
2cm at its maximum length (see Fig. 5) for edges, and 5cm for
corners. All grasps with multiple folds are considered failures.

(a) No fold. (b) Single fold. (c) Multiple folds.

Fig. 5: Examples of cloth grasps. Folds longer than 2cm from
edge to fold are considered grasp failures; of these three, only
(a) is considered a success.

For the task of grasping cloth edges, we evaluate against
three baselines:

• “Segment-Edge” segments the cloth from the table us-
ing RANSAC plane fitting. A grasp point is randomly
selected from the edge pixels of the segmentation. The
grasp direction is determined by the direction of the depth
gradient at the selected grasp point.

• “Canny-Depth” applies Canny edge detection [2] to the
depth image. The grasp point is sampled uniformly from
the set of edge points above an intensity threshold.
The grasp direction is determined by the depth gradient
direction, as in the above.



• “Canny-Color” is the same as Canny-Depth, except it
applies Canny edge detection to the gray-scaled color
image. The grasp direction is determined by the color
gradient direction instead of depth.

See Fig. B in the appendix for visualizations of these methods.
For the task of grasping cloth corners, we evaluated against

the following baselines:
• “Harris-Depth” applies Harris corner detection [7] to the

depth image. The maximum intensity value is selected as
the grasp point. The depth gradient direction at the grasp
point is used to determine the grasping direction, as in
the edge grasping experiments.

• “Harris-Color” takes a grayscaled RGB image as input
and uses color gradients to determine the grasping direc-
tion, but is otherwise the same as the above.

TABLE I: Grasping Cloth Edges and Corners

Method Edges Corners

Canny-Depth 0.20± 0.00 -
Segment-Edge 0.30± 0.00 -
Canny-Color 0.33± 0.12 -
Harris-Depth - 0.05± 0.07
Harris-Color - 0.33± 0.15
Our Method 0.70± 0.20 0.57± 0.06

3 trials per method, 10 grasp attempts per trial

The results are shown in Table I. Our method significantly
outperforms the baselines in terms of grasp success. The net-
work is largely able to correctly distinguish between edges and
folds, determine an appropriate grasp configuration direction,
and execute a successful grasp. Averaging over the trials, there
were an average of 2.7 failures out of 10 edge grasps due to
misdetection, meaning that the grasp point selected was not
a real edge. For corners, there were an average of 3 failures
out of 10 grasps due to misdetection. There was an average of
0.3 failures out of 10 grasps due to failed grasping. See below
for more details on failure cases. For corners, there were an
average of 1.3 failures out of 10 grasps due to grasping error.
Our method performs worse on corners than on edges. Fewer
regions of the image are corners compared to edges, so false
positives are more problematic.

However, our method still outperforms the baselines, which
perform poorly largely due to an inability to distinguish
between real cloth edges vs. folds. Our successful grasps are
more often flat with no folding of the cloth, with the edge near
horizontal to the gripper tip. Our perception pipeline runs in
less than half a second, with no noticeable difference from the
baselines.

Failures occurred when the segmentation produced by our
method contained errors. Because the cloth is very thin and the
depth images captured from our sensor are noisy, the network
can fail to get accurate segmentation at cloth edges (see Fig. 6,
top row). These segmentation errors affect the grasp selection

component that takes the segmentation as input. As a result, we
sometimes observed our method selecting grasp points on false
positives, which were more likely to result in grasp failures.

Failures also occurred due to grasping areas with valid edges
but problematic nearby cloth configurations. For example,
overlapping edges can create the appearance of a continuous
segmentation, and a grasp on that area will result in grasping
both edges (see Fig. 6, bottom row).

(a) RGB Image. (b) Segmentation and
Grasp Prediction.

(c) Grasp execution.

Fig. 6: Failure cases. (top row) Segmentation bleeds over real
cloth edge, leading to poor estimation of grasp height. (bottom
row) Grasp fails to avoid grasping nearby folds and edges (note
that misdetection has also occurred).

In terms of execution time, the perception component of our
method runs in approximately 0.25s, with the segmentation
network contributing approximately 0.14s to that total. Grasp
execution is a larger bottleneck and requires approximately
15s for all methods.

VI. CONCLUSION

We present a method to segment real edges and corners
of cloth (as opposed to creases or folds) from depth im-
ages. Our method also determines a grasp configuration from
these segmentations that accounts for directional uncertainty.
We demonstrate a system that implements our approach to
grasp cloths in crumpled configurations, and we show that
our method outperforms various baselines in terms of grasp
success rate on grasping success.
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